Chiro.org - Chiropractic Resource Organization.     Support Chiropractic Research!

Technique

Home/Technique

The Influence of Curricular and Extracurricular Learning Activities on Students’ Choice of Chiropractic Technique

By |May 6, 2016|Technique|

The Influence of Curricular and Extracurricular Learning Activities on Students’ Choice of Chiropractic Technique

The Chiro.Org Blog


SOURCE:   J Chiropractic Education 2016 (Mar); 30 (1): 30-36

David M. Sikorski , DC,
Anupama KizhakkeVeettil , MAOM and
Gene S. Tobias , PhD, DC

Professor
Southern California University of Health Sciences
16200 E. Amber Valley Dr.
Whittier, CA 90604


Objective:   Surveys for the National Board of Chiropractic Examiners indicate that diversified chiropractic technique is the most commonly used chiropractic manipulation method. The study objective was to investigate the influences of our diversified core technique curriculum, a technique survey course, and extracurricular technique activities on students’ future practice technique preferences.

Methods:   We conducted an anonymous, voluntary survey of 1st, 2nd, and 3rd year chiropractic students at our institution. Surveys were pretested for face validity, and data were analyzed using descriptive and inferential statistics.

Results:   We had 164 students (78% response rate) participate in the survey. Diversified was the most preferred technique for future practice by students, and more than half who completed the chiropractic technique survey course reported changing their future practice technique choice as a result. The students surveyed agreed that the chiropractic technique curriculum and their experiences with chiropractic practitioners were the two greatest bases for their current practice technique preference, and that their participation in extracurricular technique clubs and seminars was less influential.

There are more articles like this @ our:

Chiropractic Technique Page

(more…)

Inter-examiner Reliability of the Interpretation of Paraspinal Thermographic Pattern Analysis

By |July 5, 2015|Technique|

Inter-examiner Reliability of the Interpretation of Paraspinal Thermographic Pattern Analysis

The Chiro.Org Blog


SOURCE:   J Can Chiropr Assoc 2015 (Jun);   59 (2):   157-164 ~ FULL TEXT

Barbara A. Mansholt, DC, MS, Robert D. Vining, DC,
Cynthia R. Long, PhD, Christine M. Goertz, DC, PhD

Associate Professor, Clinic,
Palmer College of Chiropractic
barbara.mansholt@palmer.edu


INTRODUCTION:   A few spinal manipulation techniques use paraspinal surface thermography as an examination tool that informs clinical-decision making; however, inter-examiner reliability of this interpretation has not been reported. The purpose of this study was to report inter-examiner reliability for classifying cervical paraspinal thermographic findings.

METHODS:   Seventeen doctors of chiropractic self-reporting a minimum of 2 years of experience using thermography classified thermographic scans into categories (full pattern, partial +, partial, partial -, and adaptation). Kappa statistics (k) were calculated to determine inter-examiner reliability.

RESULTS:   Overall inter-examiner reliability was fair (k=0.43). There was good agreement for identifying full pattern (k=0.73) and fair agreement for adaptation (k=0.55). Poor agreement was noted in partial categories (k=0.05-0.22).

CONCLUSION:   Inter-examiner reliability demonstrated fair to good agreement for identifying comparable (full pattern) and disparate (adaptation) thermographic findings; agreement was poor for those with moderate similarity (partial). Further research is needed to determine whether thermographic findings should be used in clinical decision-making for spinal manipulation.


From the FULL TEXT Article:

Introduction

Doctors of chiropractic (DCs) use complex clinical decision-making when determining where, when, and when not to perform spinal manipulation. [1] Factors considered may include the diagnosis, symptom severity, presence of co-morbid conditions, patient preferences, and other examination findings [2, 3] such as static or segmental motion palpation, [4, 5] posture analysis, leg length analysis, [6] biomechanical interpretation of spinal radiographs, the presence of spinal/paraspinal tenderness, and abnormal muscle tone. [7] Some chiropractic spinal manipulation techniques, particularly those focusing on upper cervical manipulation, use thermographic and other diagnostic instruments to provide primary information to determine whether treatment should or should not occur. [8] The use of unique diagnostic instrumentation is not new to the chiropractic profession. B.J. Palmer, considered the “developer” of chiropractic, used an instrument called the electroencephaloneuromentimpograph and later, the neurocalometer. [9] The neurocalometer was the predecessor of the current nervo-scope, which is still used by some practitioners using the Gonstead technique system. [10, 11]

There are more articles like this @ our:

Thermography Page

(more…)

Chiropractic Perspectives On Myofascial Therapy

By |December 22, 2011|Education, Technique|

Chiropractic Perspectives On Myofascial Therapy

The Chiro.Org Blog


We would all like to thank Dr. Richard C. Schafer, DC, PhD, FICC for his lifetime commitment to the profession. In the future we will continue to add materials from RC’s copyrighted books for your use.

This is Chapter 15 from RC’s best-selling book:

“Applied Physiotherapy in Chiropractic”

These materials are provided as a service to our profession. There is no charge for individuals to copy and file these materials. However, they cannot be sold or used in any group or commercial venture without written permission from ACAPress.


Chapter 15:   Chiropractic Perspectives On Myofascial Therapy

The purpose of this chapter is to improve the doctor of chiropractic’s understanding of the significance of myofascial pain and dysfunction, and to improve the chiropractor’s level of competence in diagnosing the myofascial component of the subluxation complex.

The myofascial orientation in the chiropractic setting directs the doctor to look first for a myofascial source of the patient’s pain, and when found, to use numerous techniques and procedures to offer rapid relief. Lowe recommends broad spectrum therapeutics to be employed after the performance of myofascial therapy to assure maximum flexibility. [1]

Definition

Myofascial therapy may be defined in several ways. Basically, it is the treatment of the myopathophysiologic component of the vertebral subluxation complex. It is also the treatment of trigger points, areas of increased neurologic activity in muscle tissue, causing the secondary referral of pain with subsequent associated autonomic changes. [2]

The pain attributed to myofascial dysfunction is usually restricted to a certain region such as the cervical or upper thoracic area, lumbar and buttock area, or the cranial/TMJ area. A trigger point, often the cause of such pain, is always tender and palpably taut. This prevents full lengthening of the muscle and produces muscle weakening, altered proprioception, predictable referred pain patterns, and an objectively verifiable local twitch response during palpation. [3]

Historic Background

Several key figures have contributed to our understanding of the widespread cause of muscular pain syndromes, among them Travell, Rolf, and, in our own profession, Nimmo. Another chiropractor who added greatly to our understanding of the role of muscles in various pain syndromes was Gillet of Belgium. Gillet wrote, “Concerning the subluxation or misalignment, we prefer the term fixation, which describes far more accurately the actual status of the [peri]articular soft tissues, where we will find that it is the state of these tissues that actually keeps the two surfaces from moving. The osteopaths, very early on, stated that the soft tissues can vary from the simplest muscular contracture to a complete degenerative fibrosis of the muscles. The previous facts are not new ….unfortunately, x-rays, introduced early in chiropractic history, have done much to propagate the idea of the spine as a string of bones. Even today, many practitioners act as if they still believe the childish propaganda they so nimbly offer to the public, that it’s a bone out of place in the back.” [4] (more…)

The Art of the Chiropractic Adjustment, Part VII

By |March 28, 2011|Education, Technique|

The Art of the Chiropractic Adjustment, Part VII

The Chiro.Org Blog


SOURCE:   Dynamic Chiropractic

By Richard C. Schafer, DC, FICC


This series has strived to define certain general principles that underlie almost all chiropractic adjustive technics. Parts I and II reviewed depth of drive, the articular snap, segmental distraction, timing, the advantages of placing the patient’s spine in an oval posture, correct table height, and patient positioning objectives.
Part III summarized the factor of time in the clinical approach and its underlying biomechanical principles of tissue viscoelasticity, fatigue, creep, and relaxation. Part IV and V reviewed the need to visualize the loading effects on articular cartilage, joint lubrication, action of the intra-articular synovial tabs, the articular planes, the fundamental types of contact, contact points and their options, securing the contact hand, and the direction of drive. Part VI offered a rationale on adjustive velocity, and this concluding column on this subject describes various types of adjustive thrusts.

Types of Adjustive Thrusts

Test Thrusts

Test thrusts are mild preliminary thrusts applied before an actual corrective thrust is delivered. They have a twofold purpose: first, to acquaint the adjuster with the structural resistance present and patient response to the pressure applied; second, to acquaint the patient with what to expect. Surprise lowers a patient’s pain threshold.

Leverage Thrusts (more…)

The Art of the Chiropractic Adjustment: Part VI

By |March 27, 2011|Education, Technique|

The Art of the Chiropractic Adjustment: Part VI

The Chiro.Org Blog


SOURCE:   Dynamic Chiropractic

By Richard C. Schafer, DC, FICC


You may also enjoy:

Part I and

Part II and

Part III and

Part IV and

Part V

The aim of this series is to define certain general principles that underlie almost all chiropractic adjustive technics. Parts I and II reviewed depth of drive, the articular snap, segmental distraction, timing the advantages of placing the patient’s spine in an oval posture, correct table height, and patient positioning objectives. Part III summarized the factor of time in the clinical approach and its underlying biomechanical principles of tissue viscoelasticity, fatigue, creep, and relaxation. Parts IV and V reviewed the need to visualize the loading effects on articular cartilage, joint lubrication, action of the intra-articular synovial tabs, the articular planes to deliver a corrective thrust most effectively. The fundamental types of contact, contact points and their options, securing the contact hand, and direction of drive were described. This column summarizes the rationale of adjustive velocity.
Background

One’s preference in technic can be clinically justified as long as biophysical and physiologic principles are followed. In health care, however, we are not dealing with purely mechanical principles. We are dealing with patients, sensitive human beings, who are often already in pain, and we should not wish to induce any more discomfort during a correction than is necessary.

Thrust technics applied to an articulation can be divided into two categories: low-velocity technics (LVTs) and high-velocity technics (HVTs), and each has various subdivisions depending on the joint being treated, its structural-functional state, and the primary and secondary objectives to be obtained. The term adjustment velocity refers to the speed at which the adjustive force is delivered.

In either low-velocity or high-velocity technics:

The force applied may be low, medium, or high.

The duration of the force may be brisk or sustained.

The amplitude (distance of articular motion) may be short, medium, or long.

The direction of the force may be straight or curving and/or perpendicular, parallel, or oblique to the articular plane.

Overlying soft-tissue tension may be mild, medium, or strong.

Primary or secondary leverage may be applied early, synchronized, or late.

Contralateral stabilization may or may not be necessary.

Thrust onset may be slow, medium, or abrupt.


Read the rest of this Full Text article now!


The Art of the Chiropractic Adjustment: Part V

By |March 20, 2011|Education, Technique|

The Art of the Chiropractic Adjustment: Part V

The Chiro.Org Blog


SOURCE: Dynamic Chiropractic

By Richard C. Schafer, DC, FICC


You may also enjoy:

Part I and

Part II and

Part III and

Part IV and

Part VI

This series of articles has strived to define certain general principles that underlie almost all chiropractic adjustive technics. Parts I and II reviewed depth of drive, the articular snap, segmental distraction, timing the adjustment, the advantages of placing the patient’s spine in an oval posture, correct table height, and patient positioning objectives. Part III summarized the factor of time in the clinical approach and its underlying biomechanical principles of tissue viscoelasticity, fatigue, creep, and relaxation. Part IV reviewed the need to visualize the loading effects on articular cartilage, joint lubrication, action of the intra-articular synovial tabs, and the articular planes to deliver a corrective thrust most effectively. Here we shall describe the fundamental types of contact, contact points and their options, securing the contact hand and direction of drive.

Types of Contact

The type of contact used in applying a chiropractic adjustment is optional in most situations. The broadest contact that is efficient should be used, because the force will be directed through a larger surface area. For example, a force applied by a fairly open palm against the skin is perceived by the patient far differently than a force applied by a pointed finger against the skin. Thus, a palm-heel, thenar or knife-edge (medial edge of the hand) contact produces less patient discomfort than a pisiform or thumb contact. There are times, however, when a pisiform or thumb contract on a spinous process is necessary to get the job done quickly and efficiently.

Contact Points and Their Options (more…)