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Abstract In the last several years, numerous molecules
derived from plants and vegetables have been tested for
their antioxidant, anti-inflammatory, and anti-aging prop-
erties. One of them is sulforaphane (SFN), an isothiocya-
nate present in cruciferous vegetables. SFN activates the
antioxidant and anti-inflammatory responses by inducing
Nrf2 pathway and inhibiting NF-κB. It also has an epige-
netic effect by inhibiting HDAC and DNA methyltrans-
ferases and modifies mitochondrial dynamics. Moreover,
SFN preserves proteome homeostasis (proteostasis) by
activating the proteasome, which has been shown to lead
to increased cellular lifespan and prevent neurodegenera-
tion. In this review, we describe some of the molecular and
physical characteristics of SFN, its mechanisms of action,
and the effects that SFN treatment induces in order to
discuss its relevance as a Bmiraculous^ drug to prevent
aging and neurodegeneration.
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Sulforaphane

Discovery and isolation

Since 1980s, it was known that the consumption of green
and yellow vegetables (leafy green vegetables, cauliflower,
carrots, broccoli, Brussel sprouts, etc.) was related to a
reduction in the risk of developing certain types of cancer
(Colditz et al. 1985). Later, studies showed that some
molecules contained in those vegetables were capable to
induce xenobiotic metabolism and antioxidant enzyme
activation and, as a common feature, those molecules were
glutathione S-transferase (GST) substrates, becoming po-
tential protective agents against developing cancer (Talalay
et al. 1988). Later, different green and yellow vegetables
were tested to determine which of those molecules could
activate phase II enzyme activity, with the cruciferous
family being the one that enhanced these enzymatic activ-
ities the most, particularly broccoli and Brussel sprout
extracts (Prochaska et al. 1992). Almost immediately, an
isothiocyanate described as Ba potent phase II enzymes
inducer^ was isolated from broccoli extracts, and was
ident i f ied by spect roscopic methods as-1-
isothiocyanato-(4R)-(methylsulfinyl) butane or sulforaph-
ane (SFN); (Zhang et al. 1992). Phase II enzymes are
composed of antioxidant and conjugating enzyme which
are capable of enhancing xenobiotic hydrophilicity, facili-
tating their excretion, promoting cell detoxification and

https://doi.org/10.1007/s11357-019-00061-7

R. Santín-Márquez :A. Alarcón-Aguilar :
N. E. López-Diazguerrero :M. Königsberg (*)
Departamento de Ciencias de la Salud, División de Ciencias
Biológicas y de la Salud, Universidad Autónoma
Metropolitana-Iztapalapa, A.P. 55-535, 09340 Mexico City,
Mexico
e-mail: mkf@xanum.uam.mx

R. Santín-Márquez
Posgrado en Biología Experimental, Universidad Autónoma
Metropolitana-Iztapalapa, 09340 Mexico City, Mexico

N. Chondrogianni
National Hellenic Research Foundation, Institute of Biology,
Medicinal Chemistry and Biotechnology, Athens, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-019-00061-7&domain=pdf


antioxidant response (Xu et al. 2005). Following the pub-
lication of these results, many studies were focused in the
SFN synthesis, mechanism of action, and its protective role
against tumorigenesis and electrophile attacks provoked by
oxidative stress (Prestera et al. 1993; Talalay et al. 1995)
(Fig. 1).

Biosynthesis and other products after glucoraphanin

SFN is the hydrolysis product of glucoraphanin
(4-(methylsulfinyl) butyl glucosinolate), one of the main
glucosinolates contained in cruciferous vegetables, and
the most abundant in broccoli and Brussel sprouts
(Ghawi et al. 2013; Brown et al. 2002). Glucosinolates
are a family of amino acid–derived secondary metabolites
characterized by the presence of three moieties: sulfur
groups within a thiohydroximate-O-sulfonate structure; a
D-glucose molecule; and an α-amino acid–derived alkyl,
aralkyl, or indolyl side chain (Barba et al. 2016; Ishida
et al. 2014). The glucoraphanin biosynthetic pathway
comprises, at least, three stages: (1) a side chain elonga-
tion round by deamination of amino acids to a 2-oxo-acid;
(2) glucosinolate core structure formation by S-
glucosyltransferases; and (3) a S-oxygenation mediated
by monooxygenases, to finally get the bioactive form of
glucoraphanin as product (Ishida et al. 2014; Yang et al.
2017). The glucoraphanin concentration in the plant most-
ly depends on the organ, post-germination time, environ-
mental conditions, post-harvest handling conditions, and

storage (Guo et al. 2014; Winkler et al. 2007; Martinez-
Villaluenga et al. 2010). When the plant containing glu-
cosinolates is mechanically damaged (cut, chewed, or
chopped), or is under stress conditions, such as a bacterial
or fungal infection, a hydrolase called myrosinase (thio-
glucoside glucohydrolase), which is usually separated in a
different compartment, is released to interact with glucora-
phanin molecules to hydrolyze it, releasing a D-glucose
molecule and a thiohydroximate-O-sulfate, an unstable
aglycone (Burmeister et al. 2000), which spontaneously
rearranges to the isothiocyanate form of sulforaphane
(Angelino and Jeffery 2014; Barba et al. 2016; Bones
and Rossiter 2006) (Fig. 2).

Myrosinase activity decreases with heat exposure
when the vegetables are cooked before eating, favoring
the presence of glucoraphanin and diminishing the
availability of sulforaphane when the vegetables are
cooked before consumption (Ghawi et al. 2013). How-
ever, myrosinase activity is not only found in plants, it
could also be found an equivalent activity in mammal’s
lower gut microbiota thioglucosidases, allowing the hy-
drolysis of glucoraphanin and the sulforaphane absorp-
tion (Lai et al. 2010; Bheemreddy and Jeffery 2007).
Some species of bacteria, such as Escherichia coli,
Bacteroides thetaiotaomicron, Enterococcus faecalis, En-
terococcus faecium, Peptostreptococcus sp., and
Bifidobacterium sp. can process glucosinolates due to
the presence of specific thioglucosidases, maintaining
the glucoraphanin conversion to isothiocyanates even

Fig. 1 Molecular structure of
sulforaphane. The isothiocyanate
sulforaphane is an aliphatic small
molecule (177.26 g/mol) present
in cruciferous vegetables. SFN is
shown as a 2D (up) and 3D
(down) molecular model. Due to
its small molecular weight and its
relative high lipophilicity, sulfo-
raphane can easily cross the dis-
tinct cellular membranes
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after myrosinase heat deactivation (Hullar and Fu 2014)
(Fig. 3).

Physicochemical characterization

Sulforaphane is a small molecule with a molecular
weight of 177.28 g/mol and its molecular formula is
C6H11NOS2 with a melting point between 58.6 and
91.2 °C (Fishbein and Heilman 2018). Although
glucoraphanin is hydrophilic, sulforaphane, like oth-
er isothiocyanates, is typically an aliphatic lipophilic
molecule (Fahey and Talalay 1999).

Pharmacokinetics

Absorption, distribution, metabolism, and elimination

Due to sulforaphane’s small molecular weight and its
relatively high lipophilicity, it is rapidly absorbed in
the jejunum across the enteric cells after oral admin-
istration (Petri et al. 2003). It reaches the highest
concentrations in plasma 3 h after consumption

(approximately 0.9 μmol/L), and slowly decreases
after the second hour, having an approximate half-
life of 2.2 h (Hanlon et al. 2008; Hu et al. 2004;
Cramer and Jeffery 2011). When SFN is in the cells,
it is metabolized by phase II and III enzymes, for
example, glutathione S-transferase (GST) to form
conjugated products such as sul foraphane-
glutathione (SFN-GSH), sulforaphane-cysteine
(SFN-Cys), sulforaphane N-acetyl cysteine (SFN-
NAC), and sulforaphane-cysteinyl-glycine (SFN-
CG), which are thought to be important for the acti-
vation of several SFN biological effects (Clarke et al.
2011). The primary sulforaphane metabolism sites
are the intestinal walls; the liver, where it is conju-
gated with GSH; the kidney, where it is conjugated
with NAC; and the bladder (Verkerk et al. 2009) and
is accumulated mainly in those same organs, and in
lower concentrations in plasma, skin, and lung tis-
sues (Bricker et al. 2014). The excretion rate is higher at
the 6th hour after administration (Atwell et al. 2015),
excreting in urine SFN-NAC as a principal metabolite,
and total elimination is reached in the 12th hour post-
ingestion (Cramer and Jeffery 2011).

In homeostasis After insult

Myrosinase

Glucoraphanin 

containing vacuole

Nucleus

Glucoraphanin

Sulforaphane

Fig. 2 Sulforaphane synthesis in broccoli. During homeostasis,
glucoraphanin, the sulforaphane precursor molecule, is contained
in vacuoles inside the broccoli’s cells. At the same time, myrosin-
ase, the enzyme responsible of cutting glucoraphanin into glucose
and sulforaphane, localizes in the cytosol. Therefore, both

molecules are spatially separated (left panel). When the plant is
damaged, i.e., by harvesting, depredation, infection, or even
chewing, the vacuoles brake, thus releasing glucoraphanin, which
can then interact with myrosinase to form sulforaphane (right
panel)
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Proposed mechanisms of action

Keap1/Nrf2-dependent mechanism

Given that SFN was recognized as a potent inductor
of xenobiotic metabolism and antioxidant response,
the Keap1/Nrf2 pathway was a very attractive can-
didate as SFN target. Under basal redox conditions,
the nuclear factor erythroid 2-related factor 2 (Nrf2)
is sequestered by a Kelch-like ECH-associated pro-
tein 1 (Keap1) dimer and rapidly ubiquitinated by
the recruitment of the E3 ubiquitin ligase Cul3,
resulting in Nrf2 degradation via the proteasome
(Li et al. 2004; Silva-Palacios et al. 2018). When
the redox state becomes predominantly oxidized,
some regulatory cysteines of Keap1 (such as
cys151, cys273, and cys288) are oxidized and pro-
mote a conformational change that facilitates Nrf2
release and prevents its degradation (Dinkova-
Kostova et al. 2017). After being released, Nrf2
requires certain post-translational modifications,
namely, tyrosine or serine phosphorylation by

different kinases, such as MAPK or PKC that phos-
phorylate Nrf2 in Tyr568, as well as the kinase
GSK-3β, which in turn phosphorylates Nrf2 in
Ser40. Both phosphorylations are related to Nrf2
nuclear translocation (Bhakkiyalakshmi et al.
2015). When Nrf2 is imported into the nucleus, it
forms a heterodimer with small Maf proteins (MafG,
MafK, MafF), which endows it with a DNA-binding
capacity to attach to its consensus sequence, the
antioxidant response element (ARE; Silva-Palacios
et al. 2018), resulting in the transcription of diverse
antioxidant response genes, such asNAD(P)Hquinone
dehydrogenase 1 (NQO1), heme oxygenase 1 (HO-1), and
γ-glutamylcysteine ligase (γ GCL), among many others
(Guerrero-Beltrán et al. 2012).

In vivo experiments have demonstrated an increased
Nrf2 expression and nuclear localization after SFN treat-
ment (Bai et al. 2013), as well as an augmented tran-
scriptional activity (Pu et al. 2018; Zhao et al. 2016). It
has also been proposed that SFN is able to oxidize the
regulatory cys151 in the Keap1 dimer, thus stopping
Nrf2 degradation (Hu et al. 2011).

1. Broccoli 

ingestion

2. Digestion and 

myrosinase 

inactivation
3. Transport 

into the small 

intestine

Intestinal lumen

Glucoraphanin

4. SFN synthesis 

by bacterial 

thioglucosidases

Sulforaphane

5. Sulforaphane 

distribution

Microbiota

Fig. 3 Sulforaphane synthesis and absorption after consumption.
Myrosinase enzymatic activity decreases with heat and low pH, so,
it can be denatured when cooked or in the stomach due to the
acidic environment, thus diminishing sulforaphane production.
When humans consume broccoli, myrosinase activity is usually

abated, conserving glucoraphanin intact until it gets into the small
intestine, where specific bacterial species are capable of metabo-
lizing glucoraphanin into sulforaphane through bacterial
thioglucosidases, allowing sulforaphane absorption by the
enterocytes into the blood flow
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Interestingly, the Nrf2-dependent antioxidant re-
sponse is diminished during aging (Zhou et al. 2018),
but the SFN treatment has been shown to increase Nrf2
transcription, activation, nuclear translocation, DNA-
binding, and antioxidant gene expression in epithelial
cells isolated from old rats and elderly humans (Kubo
et al. 2017). Therefore, SFN has been proven to be an
important inducer of the antioxidant and protective re-
sponse during aging.

Keap1/Nrf2-independent mechanisms

NF-κB mechanism

Although SFN administration has beenmainly related to
the antioxidant response, it has been demonstrated that it
is also involved in the regulation of the inflammatory
response via the NF-κB pathway. NF-κB pathway is
considered to be the classical signaling for the inflam-
matory process and it is present in all cell types. This
pathway is involved in the transcription and regulation
of different pro- and anti-inflammatory mediators, de-
pending on the activator stimuli. NF-κB can be activated
by two different pathways: the Bcanonical^ and the
Balternative,^ keeping in common the presence of dif-
ferent inhibitors from the IκB family (transcriptional
repressors that halt NF-κB in the cytosol), and the IκB
kinase family (IKK; proteins involved in the IκB
phosphorylation and subsequent degradation;
Lawrence 2009; Shih et al. 2011; Sun 2017). In mam-
mals, the NF-κB transcription factor family consists of
five distinct proteins: p65 (RelA), RelB, c-Rel, p105/
p50 (NF-κB1), and p100/52 (NF-κB2), which can form
both heterodimers and homodimers, with p50/p65 het-
erodimer being the most abundant (Oeckinghaus and
Ghosh 2009).

Although it is not fully elucidated how SFN inhibits
the inflammatory response, it is known that SFN is
capable to diminish NF-κB nuclear translocation and
DNA-binding capacity (Heiss et al. 2001). Inflamma-
tionmaster regulators, like TNF-α or IL-6, also decrease
after SFN treatment, suggesting an inhibition of the
NF-κB pathway (Negi et al. 2011). Even the secretion
of several pro-inflammatory cytokines such as IL-2, IL-
4, IL-6, and IFN-γ is inhibited in a SFN dose-dependent
manner (Checker et al. 2015), suggesting that NF-κB
could be directly interacting with SFN. However, the
effect of this isothiocyanate in the inflammatory re-
sponse can be observed upon its effect on other proteins

different from NF-κB, such as IKB, the NF-κB repres-
sor responsible for its cytosolic localization, whose deg-
radation is inhibited in a dose-dependent manner in vivo
after SFN treatment (Nallasamy et al. 2014) (Fig. 4).

Epigenetic mechanism

Another mechanism of action for SFN was proposed
several years ago by Myzac, Ho, and Dashwood.
Knowing that SFN-NAC (SFN-N-Acetylcysteine)
and SFN-Cys are important metabolites formed when
SFN is metabolized through the mercapturic acid
pathway, and using a molecular modeling approach,
they discovered a plausible interaction for the carbox-
ylate group of SFN-Cys within the active site of
HDACs (histone deacetylases) using Zn as a bidentate
ligand (Myzak et al. 2004). This interaction of SFN
metabolites inhibits the HDAC activity, thus altering
the cellular epigenetic pathways.

The same research group established an association
betweenHDAC inhibition and histone acetylation increase
on Bax and p21 promoters (Myzak et al. 2006b); Bax is a
well-known antiapoptotic protein that belongs to the Bcl2
family, while p21 is a cell cycle inhibitor that binds to
CDK-cyclins and blocks their effect. So, elevated Bax and
p21 mRNA and protein expression have been associated
with cell cycle arrest and apoptotic cell death in cancer
cells after SFN treatment due to an epigenetic mechanism
(Myzak et al. 2006a, 2006b) (Fig. 5).

Currently, it is also known that this particular isothio-
cyanate and its metabolites decrease the expression of
DNA methyltransferases (DNMTs), especially DNMT1
and DNMT3b. In particular, SFN diminishes methylation
in cyclin D2 promoter regions containing c-Myc and
multiple Sp1 binding sites (Hsu et al. 2011). These results,
together with SFN HDAC inhibitory effect, place these
molecules as important epigenetic regulators, which are
able to induce the transcriptional activation of several
tumor suppressor genes (Dashwood and Ho 2008).

Being SFN, an isothiocyanate derived from cruciferous
vegetables; it has become an important object of investi-
gation as a functional food or as a food supplement. To
date, there are numerous studies where SFN improves
cellular conditions due to its epigenetic role.

The effect of SFN as an HDAC inhibitor was mainly
explored to explain its anti-tumorigenic effect using essen-
tially human embryonic kidney 293 cells, HCT116 human
colorectal cancer cells and BPH-1, LnCaP and PC-3 pros-
tate epithelial cells, and also some in vivo murine models
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(Myzak et al. 2006b), where SFN was shown to increase
the acetylation of histone H3 and histone H4.

SFN is also known to inhibit to TERT expression by
decreasing DNMTs in MCF-7 andMDA-MB-231 human
breast cancer cells (Meeran et al. 2010); therefore, SFN
alone or in combination with other natural compounds
such as genistein (Paul et al. 2018), withaferin A
(Royston et al. 2017), or epigallocatechin-3-gallate (Li
et al. 2016) inhibits cellular proliferation of breast cancer
cell lines.

Even though there are many reports related to SFN’s
neuroprotective effect in brain cells and neurodegener-
ative diseases, most of them are related to its effects
associated to Nrf2 activation, which were already
discussed above. Nevertheless, there are very few stud-
ies addressing SFN’s epigenetic mechanism in the brain.
More specifically, Zhao et al. (2018) found that SFN

augmented the antioxidant and anti-inflammatory ca-
pacity of mouse neuroblastoma N2a cells that overex-
press the human Swedish mutant amyloid precursor
protein (N2a/APPswe cells), which is a common cellu-
lar model of Alzheimer’s disease. They found that SFN
upregulated Nrf2 expression by reducing DNA demeth-
ylation levels of the Nrf2 promoter (Zhao et al. 2018), in
a very interesting study that involves both the epigenetic
mechanism and the Nrf2-activation mechanism. In an-
other model using the triple-transgenic mouse model of
Alzheimer’s disease (3 × Tg-AD), Kim et al. (2017)
showed that the use of SFN regulates the expression of
the Brain-derived neurotrophic factor (BDNF) via
HDAC inhibition, thus increasing H3 and H4 acetyla-
tion on the BDNF promoter. Enhancing BDNF expres-
sion as an effect of SFN treatment increased the neuro-
nal content of several synaptic molecules like MAP 2,

Cys288

Cys273

Nrf2

Cul3

Ub

Ub

Ub

Proteasomal 

degradation

SFN

Cys151

SFN

Cys151

Cys273

Cys288

Nrf2

MAPK

PKC

GSK-3β

P Ser40

SFN

SFN

SFN

SFN

P Tyr569

Nrf2

P

PMaf

SFN

SFN

NQO1

HO-1 

γ GCL

Nrf2 pathway NF- B pathway
Pro inflammatory signals

IKKα IKKβ

NEMO

I B
P

p50 p65

Proteasomal 

degradation

p50 p65

Inflammatory 

mediators

SFN
?

SFN
?

SFN

SFN

Fig. 4 Effects of sulforaphane on Nrf2 and NF-κB pathways.
After sulforaphane enters the cell, it can interact with many differ-
ent proteins, directly modulating numerous cellular pathways.
Nrf2 pathway: Keap1/Nrf2 pathway is one of the most important
pathways affected by sulforaphane that is responsible for antiox-
idant response and xenobiotic metabolism (left panel). Nrf2 is
repressed by Keap1 and degraded by the proteasome under basal
conditions, but when Keap1 regulatory cytosines are oxidized,
Nrf2 is released and post-translationally modified to be
translocated into the nucleus and dimerize with small Maf pro-
teins. Nrf2 can then bind to antioxidant response elements, namely
AREs. Also, sulforaphane can oxidize some important regulatory

cytosines from Keap1, allowing Nrf2 cytosolic accumulation and
nuclear importing. NF-κB pathway: NF-κB is also an important
pathway regulated by sulforaphane. It is in charge of inflammatory
response regulation. Under basal conditions, NF-κB is sequestrat-
ed into the cytosol by IκB, but when pro-inflammatory ligands
bind to its receptors, the IKK protein family phosphorylates IκB to
degrade it via proteasome, so NF-κB is able to translocate into the
nucleus and transcript several inflammatory mediators. Sulforaph-
ane is capable to inhibit IκB phosphorylation and NF-κB nuclear
translocation, although the exact mechanism of action is not fully
known
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synaptophysin, and PSD-95 in primary cortical neurons
of 3 × Tg-AD, suggesting that this molecule might be an
attractive drug to minimize neurodegenerative disor-
ders. However, more research is needed to evaluate the
epigenetic mechanism of SFN in the brain.

Sulforaphane effects on proteasome status

Proteasome in aging and neurodegeneration

Proteasomes are the main cellular degradation machin-
eries implicated in almost all pathways and (normal and
pathological) conditions through their role in the main-
tenance of proteome homeostasis (proteostasis;
Papaevgeniou and Chondrogianni 2016). The main eu-
karyotic proteasome complex is called 20S core that is
produced by the association of 4 rings composed by 7
different α- and β-type subunits in an α7β7β7α7 order.
On one or both edges of the 20S core, various regula-
tory complexes may be bound giving rise to higher
molecular weight complexes with the 26S/30S pro-
teasome being the most studied (produced through

binding of one (26S) or two (30S) 19S complexes at
the 20S core ends) (Ciechanover 1998; Budenholzer
et al. 2017).

Apart of the role of this multi-enzyme in the
regulation of almost all vital cellular processes such
as the cell cycle and protein catabolism, it is also in
charge of the cellular detoxification from oxidized
and misfolded proteins that accumulate during the
progression of aging or age-related diseases
(Chondrogianni et al. 2015). We, among others,
have shown that the proteasome function is reduced
during the progression of cellular senescence and
aging (Chondrogianni et al. 2000, 2003, 2008). Con-
sequently, proteasome activation has emerged as a
hot spot in the anti-aging field (Chondrogianni et al.
2015b; Vilchez et al. 2014). More specifically, protea-
some activation in primary fibroblasts either through ge-
netic overexpression of proteasome subunits
(Chondrogianni et al. 2005; Chondrogianni and Gonos
2007; Hwang et al. 2007) or through natural compound
treatment (Katsiki et al. 2007; Kapeta et al. 2010; Kwak
et al. 2007) has been shown to lead to increased cellular
lifespan and enhanced stress resistance. The same was
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Fig. 5 Effects of sulforaphane on epigenetic mechanisms. Sulfo-
raphane is able to interact with HDACs, modifying the chromatin
compaction state. It is known that sulforaphane linked to NAC can
bind to the HDAC’s active site using a Zn atom, thus inhibiting
histone deacetylation. The chromatin relaxation allows

transcription of certain genes such as p21 or Bax, which act as
tumor suppressors (left). Sulforaphane can also decrease DNMT
expression, thus inducing various gene transcription, such as cell
cycle regulators (like Cyclin D2) or stress-protector transcription
factors (like Nrf2; right)
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shown to occur in lens epithelial cells, thus showing that it
is not a cell type-specific effect (Liu et al. 2007). More
recently, we achieved proteasome activation in the multi-
cellular organismal level (C. elegans) through genetic
overexpression of pbs-5 proteasome subunit
(Chondrogianni et al. 2015a) as well as through a natural
compound that is a diet constituent (Papaevgeniou et al.
2016). On top of the promotion of proteasome activation
on the anti-aging field, this strategy is also emerging in the
field of aggregation-related diseases (such as Alzheimer’s,
Parkinson’s, Huntington’s disease among others) where
the proteasome is either inhibited or downregulated upon
the disease progression (Vilchez et al. 2014). Overexpres-
sion of Rpn6 proteasome subunit in C. elegans or Rpn11
proteasome subunit in D. melanogaster results in reduced
toxicity of poly-Q aggregates and suppressed neurodegen-
eration in HD models (Vilchez et al. 2012; Park et al.
2009). We have also shown that proteasome activation
exerts a protective role against Aβ toxicity in various AD
models of C. elegans and in murine primary neurons
(Papaevgeniou et al. 2016).

Sulforaphane enhances the proteasomal function

Microarray analysis has shown that most of the protea-
some subunits are transcriptional targets of Nrf2 in
mammals (Kwak et al. 2003) while the same was also
shown for its orthologue namely SKN-1 in C. elegans
(Kahn et al. 2008). This regulation occurs under specific
conditions such as the cellular response to oxidative
stress induced by SFN. In addition to the enhanced
SFN-mediated induction of several proteasome subunits
(Kwak et al. 2007), increased proteasome activity was
also attributed to the SFN-mediated upregulation of
Hsp27 that was shown to promote proteasome activa-
tion as well (Gan et al. 2010) (Fig. 6).

Treatment of murine neuroblastoma cells with SFN
enhanced both the expression and the function of pro-
teasome via Nrf2-mediated regulation endowing cells
with enhanced resistance against H2O2-mediated oxida-
tive stress and toxicity (Kwak et al. 2007). Additionally,
SFN-mediated Nrf2 induction protected neuroblastoma
cells from Aβ-induced cell death. This protection was
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Fig. 6 Effects of sulforaphane on proteasomal activity. Protea-
some activity is fundamental for maintaining proteostasis. It is
known that impaired proteasome function is related to several
pathologies, and occurs naturally during aging as shown in the
figure, leading to abnormal damaged protein accumulation and
cell stress. Sulforaphane can reactivate proteasome activity and

function during aging and some pathologies through Nrf2 activa-
tion. This is due to the Nrf2-mediated transcriptional regulation of
many proteasome subunits under stress conditions. At the same
time, sulforaphane upregulates HSP70 further enhancing protea-
some activation
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shown to be dependent on proteasome activation pro-
moted by Nrf2 (Park et al. 2009). Upon oxidative stress
adaptation, Nrf2-dependent enhancement of oxidized
protein degradation has been attributed to the enhanced
expression of both the 20S core and the 11S regulator
(Pickering et al. 2012) (Fig. 6).

The proteasome activating effects of SFN were
also verified in UPS function reporter mice. On top
of the proteasome activation, enhancement of the
autophagy activity was also revealed in the brain
and the liver of the relative mice, suggesting that
this might be another pathway to be explored due to
SFN treatment.

Sulforaphane effects on the central nervous system

Sulforaphane in neuroinflammation

Neuroinflammation is a common feature of neurological
diseases. Inflammasomes, which form a multiprotein
complex within the innate immune system, induce in-
flammation in response to various stimuli, such as path-
ogens and stress. Inflammasomes activate pro-
inflammatory caspases, like caspase-1, that lead to the
activation of pro-inflammatory cytokines, including the
interleukins IL-1b, IL-18, and IL-33, which promote
neuroinflammation and brain pathologies (Pennisi
et al. 2017). The toll-like receptors (TLR4) also partic-
ipate in the process of neuroinflammation, due to ROS
and cytokine generation (Iizumi et al. 2016). Both
astroglia and microglia express TLR4 receptors, and
endogenous ligands produced in the ischemic brain
induce inflammatory responses. It has been reported that
hyperammonemia induces neuroinflammation and in-
creases GABAergic secretion. Hernandez-Rabaza et al.
(2016) showed that SFN administration to Wistar male
rats with hyperammonemia decreased IL-1b and
GABA, and increased IL-4 and IL-10. Moreover, it
has also been observed that in 2-month-old C57BL/6
mice, in which cognitive functions were decreased due
to neuroinflammation induced with LPS for 7 days, pre-
treatment with SFN 30 min before LPS administration
improved the temporal space behavior and the memory
compared to those animals administered only with LPS
(Gao et al. 2018).

The most recognized idea to explain the mechanism
by which SFN decreases neuroinflammation is the acti-
vation of the transcription factor Nrf2 and the increase in

the expression of its target genes, as described previous-
ly. For example, in the microglial cell line BV2 and in
the primary microglial cultures from adult and aged
mice stimulated with LPS to induce an inflammatory
state, SFN treatment decreased the expression of pro-
inflammatory markers such as IL-1b, IL-6, and iNOS
via Nrf2 antioxidant response (Townsend and Johnson
2016). In an okadaic acid model (OKA) (Tonoki et al.
2009), which induces oxidative stress and neuroinflam-
mation by decreasing Nrf2 levels, the administration of
SFN prevented the memory impairment induced by
OKA in rats. That treatment also restored Nrf2 and
antioxidant protein (GCLC, HO-1) expression, di-
minished the oxidative stress by attenuating ROS
and NO levels, and increased GSH concentration.
In addition, neuroinflammation was also diminished
by reducing NF-κB and TNF-α, and by rising IL-10
levels, which was followed by a reduction in neuro-
nal apoptosis in the rat’s cerebral cortex and hippo-
campus (Dwivedi et al. 2016).

Conversely, in a dietary intervention experiment, old
mice were fed with a 10% broccoli diet for 28 days, and
the neuroinflammation was reduced by an increment of
interleukin-1β mRNA and a decrement of b-245 β,
preventing the upregulation of reactive glia markers. In
this way, a 10% broccoli diet provided a modest reduc-
tion in age-related oxidative stress and glial reactivity,
but was insufficient to inhibit LPS-induced inflamma-
tion (Townsend and Johnson 2016).

Another interesting mechanism proposed to explain
SFN participation in the reduction of neuroinflamma-
tion is through the inhibition of the transcription factor
NF-κB. In a model of human macrophages (THP-1)
exposed to the peptide Aβ1-42 to induce an inflamma-
tory state and subsequently treated with SFN, IL-1b and
TNF-α levels decreased, and that correlated with a
reduction in NF-κB translocation (Jhang et al. 2018).
These results suggest that the effect of SFN might be
through a combined mechanism of Nrf2 activation and
NF-κB inhibition in a situation where the cellular redox
state could be playing a preponderant role.

Sulforaphane in the treatment of different
neuropathologies

Most of the neurodegenerative diseases, including
Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (Bricker et al. 2014),
Huntington’s disease (Sachdeva et al. 2014), and
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multiple sclerosis, are characterized by a compromised
redox state, where a deficiency in the antioxidant re-
sponse, mediated by the transcription factor Nrf2, has
generally been observed (Liddell 2017). Since oxidative
stress and neuroinflammation have been mainly related
to the decrease in cognitive function, it is not surprising
that SFN treatment has been used as a conceivable
therapy to improved cognitive functions in different
animal models.

Several studies have shown that SFN treatment pro-
tects against oxidative stress induced by various mole-
cules such as MPTP, 6-OH dopamine, and rotenone in
animal models of PD, by increasing Nrf2 activation and
regulating the antioxidant response (Jazwa et al. 2011;
Morroni et al. 2013; Zhou et al. 2016).

In an HD model using mice treated with 3-NP, SFN
treatment decreased the levels of pro-inflammatory cy-
tokines, such as TNF-α, IL-6, iNOS, COX2, as well as
NF-κB activation, and increased the Keap-1/Nrf2/ARE
pathway (Jang and Cho 2016). Treatment of cells ex-
pressing the mutated huntingtin protein (mHtt) with
SFN resulted in increased mHtt degradation that was
accompanied by decreased mHtt cytotoxicity. This pos-
itive effect was abolished upon treatment with MG132,
a proteasome inhibitor, thus further demonstrating the
tight interplay between SFN and proteasome activity
discussed above (Liu et al. 2014).

Multiple sclerosis (MS) is a chronic disease charac-
terized by focal lesions, axon demyelination, and in-
flammation that involve the infiltration of peripheral
macrophages into the central nervous system. MS is a
difficult pathology to study in animal models, so it is
usually studied by evaluating the effects of autoimmune
responses that resemble MS. The effect of SFN on
experimental autoimmune encephalomyelitis (EAE) in
C57BL/6 mice significantly inhibited the development
and severity of this disease, accompanied by reduced
spinal cord inflammatory infiltration and demyelination.
In addition, the protection induced by SFN was also
related to decrease oxidative stress levels in the mice
brains through activation of the Nrf2/ARE pathway and
the increase in the HO-1 and NQO1 expression. On the
other hand, treatment with SFN inhibited the immune
responses mediated by the specific Th17 reactions and
augmented the anti-inflammatory response mediated by
IL-10 (Li et al. 2013).

In the transgenic PS1V97L mice model of AD, 6-
month-old animals treated with SFN for 4 months im-
proved their cognitive function in comparison to aged

match non-treated animals (Hou et al. 2018). In another
AD model, the double transgenic amyloid APP/PS1
(precursor protein/presenilin 1) mice, SFN treatment
improved the ability of independent exploration in the
open field, the environmental adaptability, and amelio-
rated the Morris maze test (Zhang et al. 2017). Interest-
ingly, consumption of glucoraphanin, a precursor of
SFN, by 6-week-old young mice prevented the cog-
nitive function decline during adulthood when phen-
cyclidine (an NMDA receptor antagonist) was ad-
ministrated, suggesting that SFN might also be used
as a prophylactic treatment to prevent cognitive def-
icit (Shirai et al. 2015).

More recently, the beneficial effects of SFN on
hippocampal-dependent spatial memory impairment in-
duced by post-natal proteasome inhibition was revealed.
More specifically, SFN administration was accompa-
nied by Nrf2 nuclear translocation and led to upregula-
tion of β5 proteasome subunit and thus to a potential
enhancement of proteasome function that attenuated the
deleterious effects of post-natal proteasome inhibition.
Mice pretreated with SFN were rescued of spatial mem-
ory impairment during adulthood that was developed in
mice treated with the proteasome inhibitor MG132 in
the absence of SFN. Additionally, SFN treatment pro-
moted the expression of various molecules that are
involved in synaptic plasticity (Sunkaria et al. 2018).
Protective effects in the brain against stroke were also
shown to occur after SFN preconditioning in the cere-
bral vasculature, although the proteasome status was not
examined under those conditions (Alfieri et al. 2013).
Nevertheless, the possible therapeutic potential of Nrf2
inducers in vascular disease and aging through the
crosstalk of Nrf2 with the proteasome has been sug-
gested (Chapple et al. 2012).

Concerning ALS, there are no conclusive results
whether SFN counteracted the dysfunctional effects of
the disease; however, it has been observed a slight
restoration in Nrf2 levels, which might be an interesting
start to treat this pathology (Liddell 2017).

Effects of SFN on aging

Longevity and lifespan

Currently, aging is considered a multifactorial, univer-
sal, progressive, and deleterious process that occurs over
time in living beings, and that has as a consequence the
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decline in the organism’s physiological functions, in-
creasing their vulnerability to disease and death (López-
Otín et al. 2013; Organization, WHO 2015).

Several studies have reported an increment in oxida-
tive stress and a decay in antioxidant defense mecha-
nisms during aging. This situation decreases the organ-
ism’s protection against numerous oxidative, chemical,
and pathological stresses (Dai et al. 2014; Poprac et al.
2017), since it has been proposed that redox status might
function as a mediator between the genome and epige-
nome (genes expression) and the exposome (environ-
ment, diet, life style, etc. (Jones 2015).

One of the features that is known to decrease during
aging is the Nrf2 signaling (Sachdeva et al. 2014; Zhang
et al. 2015; Zhou et al. 2018). However, some bioactive
molecules, like SFN, are able to re-activate the Nrf2
pathway through all the mechanisms discussed above,
thus associating SFN treatment with the prevention of
aging decline and age-related pathologies (Greco et al.
2011). Nevertheless, the concentrations of SFN used
must be taken into consideration, because it is known
that SFN has different effects depending on the cell type
and organism, an aspect that is still being studied in the
aging context.

In a human model of cataracts associated to aging,
lens epithelial cells (hLECs) are known to accumulate
oxidative damage by decreasing the antioxidant en-
zymes, particularly a reduction in Prdx6. When those
cells were treated with SFN, they increased the Nrf2
activity leading to Prdx6 expression and cytoprotection
against UVB-induced injury (Kubo et al. 2017).

Several studies suggest that aging is the result of an
age-associated decline in stem cell self-renewal, repli-
cation, and lineage commitment (Sharpless and
DePinho 2007). When the effects of SFN were evaluat-
ed on the biology of human mesenchymal stem cells
(MSCs), it was found that low doses of SFN promoted
MSC proliferation and protected them from apoptosis
and senescence, but higher doses had a cytotoxic and
contrary effect. Probably, the adverse effects of SFNwere
due to its pro-oxidant function generating glutathione de-
pletion and superoxide production (Zanichelli et al. 2012).

It is well known that increased cell senescence con-
tributes to aging-associated diseases. Senescence can be
induced by stressors like oxidative stress, dysfunctional
telomeres, excessive mitogen signaling, perturbations in
chromatin organization, oxidative DNA damage, and
oncogenic activation, among others (Campisi and di
Fagagna 2007; Childs et al. 2015). Many studies have

shown a continuous increase in glucose metabolism
through glycolysis in senescence. Hariton et al. (2018)
showed evidence that treatment with 1 μM SFN once
per week delayed the senescence of human MRC-5 and
BJ fibroblasts, exhibiting a caloric restriction mimetic-
like activity and a decreased oxidative damage to pro-
teins and DNA.

Asmentioned above, SFNmodulates several epigenetic
modifications such as DNAmethylation and histone mod-
ification (Meeran et al. 2010). It was shown that SFN
participates in the inhibition/modulation of HDAC and
DNMTactivity leading to the reactivation of epigenetically
silenced genes in order to enhance chemoprevention
(Tortorella et al. 2015). These changes in the epigenome
aid in the prevention of neoplasms, resulting in cancer cell
death, and potentiate the longevity effects of caloric restric-
tion (Daniel and Tollefsbol 2015).

Regarding premature aging, lately there is an increase
interest on studying the protection conferred by SFN
against cellular skin aging. Skin aging is sensitive to
stress factors including ultraviolet radiation (UVR), ex-
cessive alcohol consumption, tobacco abuse, and envi-
ronmental pollution that lead to cumulative deterioration
in skin appearance and function (Pontius and Smith
2011). SFN has demonstrated protective effects against
ultraviolet-induced skin damage through several mech-
anisms of action, by a decrement of oxidative stress
(Talalay et al. 2007), and maintenance of collagen levels
during photo-aging via the inhibition of the AP-1 acti-
vation and the expression of metalloproteinases (Zhu
et al. 2004).

Related to the effect of SFN on longevity, in a study
of beetles fed with flour diet supplemented with lyoph-
ilized broccoli, elongation of their lifespan under phys-
iological conditions (32 °C) as well as during heat-stress
conditions (42 °C) was observed. Broccoli also in-
creased longevity in the absence of stress, with the most
significant benefit achieved using 1–5% broccoli. The
transcription factor Nrf2 increased stress resistance by
induction of detoxification, regulation of key stress-
resistant factors such as Nrf-2, Jnk-1, and Foxo-1 that
resulted to longevity (Grünwald et al. 2013).

The Hutchinson-Gilford progeria syndrome (HGPS)
recapitulates the normal aging process, with the expression
of mutated lamin A known as ‘Progerin’ causing DNA
damage and genomic instability (Gordon et al. 2014).
Progerin is also known to alter various components of
the cellular proteolytic pathways, thus leading to impaired
proteasome activity and autophagy. Accordingly, the

665GeroScience (2019) 41:655–670



beneficial effects of SFN on HGPS were also revealed.
Fibroblasts from patients and normal individuals were
treated with sulforaphane, and progerin clearance was
induced (Gabriel et al. 2015). On top of that, the authors
showed that long-term treatment of both normal and
HGPS fibroblasts with sulforaphane resulted in increased
proliferation rates. This was in agreement with the pro-
longevity effects of another Nrf2 activator, namely 18α-
glycyrrhetinic acid that was shown to act as pro-longevity
factor both in normal fibroblasts (Kapeta et al. 2010) and in
C. elegans (Papaevgeniou et al. 2016).

Conclusions

In summary, SFN has been shown to modulate several
cellular pathways in order to activate diverse protective
responses, which might allow avoiding cancer and neu-
rodegeneration as well as improving cellular lifespan
and health span. However, several interesting questions
that still remain unanswered are: Does sulforaphane
activate all Nrf2 target genes or is there a selectivity
for particular ones such as antioxidant or proteasome
genes? If so, how is this selection done? Could SFN be
used as an anti-aging compound? Might the Nrf2 induc-
tion and NF-κB repression lead to side effects? What
concentrations might be used in cells and animals and
for how long? Does SFN have the same effect on young
animals as it does on old animals?

Answers to those questions will eventually reveal the
therapeutic potential of Nrf2 inducers in general but also
the relative protective potential of sulforaphane.
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