PMC full text: |
|
Table 1
Goodness of fit statistics for models of pain trajectory from latent class growth analysis.
Model AICLL BICLL CAICLL Test of improvement in model fit compared to model with 1 less clustera Back pain 3 Cluster 7033 7090 7101 <0.001 4 Cluster 6947 7025 7040 <0.001 5 Cluster 6917 7016 7035 <0.001 6 Cluster 6905 7025 7048 <0.001 7 Cluster 6900 7040 7067 0.01 8 Cluster 6900 7061 7092 0.19 Facial pain 2 Cluster 4314 4351 4358 <0.001 3 Cluster 4277 4334 4345 <0.001 4 Cluster 4251 4329 4344 <0.001 5 Cluster 4246 4345 4364 0.008 6 Cluster 4252 4372 4395 0.58 Headache 2 Cluster 7616 7652 7659 <0.001 3 Cluster 7340 7397 7408 <0.001 4 Cluster 7288 7366 7381 <0.001 5 Cluster 7273 7372 7391 <0.001 6 Cluster 7256 7376 7399 <0.001 Stomach pain 2 Cluster 7003 7039 7046 <0.001 3 Cluster 6885 6943 6954 <0.001 4 Cluster 6834 6912 6927 <0.001 5 Cluster 6822 6921 6940 <0.001 6 Cluster 6822 6942 6965 0.17 AIC, Akaike’s information criterion; BIC, Bayes’ information criteria; CAIC, consistent Akaike’s information criterion; LL, log-likelihood. Optimal models based on goodness of fit statistics shown in bold.