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ABSTRACT

Objective: This study aimed to establish if chiropractic care can improve oculomotor and cognitive symptoms in
individuals with persistent postconcussion syndrome (PPCS).

Methods: A single-blind, randomized controlled intervention study recorded baseline computerized eye-tracker
assessment (CEA) outcomes in 40 young adults with PPCS following mild traumatic brain injury. Participants were
randomly allocated to either a chiropractic or age-matched active control intervention, and the change in CEA
outcomes following intervention was compared between the chiropractic and control groups. A battery of CEAs
including egocentric localization, fixation stability, pursuit, saccades, Stroop, and the vestibulo-ocular reflex, were
used to assess oculomotor function, visual attention/processing, and selective attention.

Results: Relative to the control group, participants receiving the chiropractic intervention scored better in the Stroop
test (P < .001), had improved gaze stability during both vestibulo-ocular reflex (P < .001) and fixation stability

(P =.009), and a lower vertical error in egocentric localization (P < .001). However, performance was poorer in
pursuits, where they had an increased tracking error (P < .001).

Conclusion: Chiropractic care in participants with PPCS significantly improved static and dynamic gaze stability, and
performance in the Stroop test, compared with a control intervention. These results suggest that chiropractic care can
offer a novel avenue for alleviating certain visual and cognitive symptoms in patients with PPCS. It also adds to the
growing evidence that suggests that some longstanding PPCS visual symptoms may have a spinal or proprioceptive
basis. (J Manipulative Physiol Ther 2024;47;1-11)
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INTRODUCTION

Traumatic brain injury (TBI) is a change in typical brain
function that affects neurologic function after an external
force to the head.'” Diagnosis and categorization of TBI
severity is currently subjective, open to bias, and predicting
an individual’s outcome after injury is challenging.’"
Although symptoms can vary depending on the neurologic
area of injury, visual symptoms are common following
even mild TBI (mTBI) owing to the many areas of the brain
involved in processing vision’ and controlling the eyes.
Visual symptoms can include oculomotor dysfunction
including disorders of convergence and accommodation,
poorer fixation, slower or less accurate saccades, poorer
pursuit movements, and modification of the vestibulo-ocu-
lar reflex (VOR).® Other common symptoms are less spe-
cific, but impact tasks that tax attentional, inhibitive, or
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visuospatial processing.”* To gain accurate and objective
measures of eye gaze behaviors, computerized eye-tracker
assessments (CEAs) have become increasingly common.’
Previous work using CEAs has suggested that changes in
vision after mTBI may be, in addition to the primary neuro-
logic insult, due to proprioceptive changes from cervical
spine dysfunction or damage.”'" This is supported by other
research that shows altering proprioceptive drive with
vibration changes CEA outcomes in those with mTBL '’
Further augmenting this dual site of injury concept is those
with mTBI have a higher incidence of neck pain'”'’ and
significantly worse objective measures of cervical spine
function."!

Altering proprioceptive drive to the brain with either
whole body or localized cervical spine vibration'' has been
shown to improve CEA performance in mTBI, and cogni-
tive performance in a range of other conditions, including
Alzheimer’s disease,'* Parkinson’s disease,'> and stroke,'®
and improves performance on the Stroop test in young
adults.'” Although the exact process remains unclear,
enhancing proprioceptive input to the brain is believed to
aid in the integration of vestibular and sensorimotor func-
tions, as well as improve cognitive performance.'*'® A
drawback of vibration therapies is the transitory nature, so
another proprioceptive based intervention—chiropractic
care—was investigated as a potential pathway to manage
visual deficits post mTBI. Chiropractic is a type of manual
therapy whose aim is to manage spinal articular dysfunc-
tion and the altered neurologic component associated with
it.'"” Spinal joint dysfunction can result in altered afferent
input to the central nervous system, which modifies the
way it processes and integrates sensory and proprioceptive
input.”*' Once spinal dysfunction is corrected, the sensori-
motor integration and cognitive function can improve.”* "
Theoretically, if participants with mTBI have symptoms
(as assessed by CEAs) that were caused or worsened by a
related spinal injury, then managing the spinal dysfunction
could, in turn, improve CEA outcomes and potentially their
symptomology.

As an initial step in investigating this therapeutic inter-
vention, this study aimed to investigate whether a chiro-
practic intervention intended at reducing spinal
proprioceptive dysregulation can alter some of the com-
monly reported defects in eye-tracking function and spatial
awareness that occur following mTBI.

METHODS

Trial Design and Participants

This single-blinded, randomized controlled, single inter-
vention study compared preintervention and postinterven-
tion measures from 6 CEAs between 2 age-matched groups
with self-reported long-term mTBI symptoms for more
than 3 months (persistent postconcussion symptoms,
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postconcussion syndrome [PPCS])—1 group receiving a
chiropractic intervention and the other as a control group.
Following measurements of baseline CEA outcomes, par-
ticipants then completed the Rivermead Post-Concussion
Symptoms Questionnaire (RPQ) to further assess and quan-
tify the severity of their symptomatology.”” They then had
either a chiropractic or active control intervention (detailed
below), before repeating postintervention CEAs, Figure 1.
Participants were randomized into an intervention group
(chiropractic or control), balanced for age and gender,
using a computer-generated block randomization sequence
using a free, online program (QMinim”®). The researcher
that performed the randomization was the only person who
knew which intervention participants were allocated to.
Once randomization was completed the chiropractor was
informed, outside the presence of the participant, which
group the participant was assigned to, to maintain single
blinding. Once allocated to either the chiropractic or con-
trol intervention participants underwent their appropriate
intervention with the chiropractor.

To avoid the influence of presbyopia on the near com-
puter task, all participants were between 18 and 35 years
old, and had no known oculomotor deficits prior to their
mTBI, and self-reported normal or corrected to normal
vision. Persistent postconcussion symptoms were defined
as symptoms of mTBI that persisted past the typical
3-month healing time.”’

Participants were recruited by word of mouth from the
New Zealand Chiropractic College using a snowball sam-
pling method.” The study took place at the Centre for Chi-
ropractic Research at the New Zealand Chiropractic
College between July 2021 to April 2022 and was managed
around COVID-19 related lockdowns in compliance with
the government and university restrictions as required.

Sample size calculations were performed using the R
software®’ package pwr.”' Sample size calculations
were based on a previous study assessing chiropractic
intervention on eye tracking, where a mean improve-
ment of 1.73 was found in the number of trials per-
formed correctly.”” To detect a true difference in the
experimental and control means, it was calculated that
30 participants were needed to be able to reject the null
hypothesis that the population means of the intervention
and control groups were equal with probability (power)
0.8 and an alpha of 0.05. Bujang™ recommends adding
another 20% to 25% to participant numbers from power
calculations to offset potential dropouts, population dif-
ferences, or unforeseen circumstances (such as COVID-
19 related challenges); therefore, a minimum of 40 par-
ticipants was the recruitment aim.

Ethics
The experimental protocol and procedure were approved
by the New Zealand Health and Disability Ethics
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Fig 1. Progression of study flow from enrolment of 40 participants with persistent postconcussion syndrome (PPCS) to data analysis
of the change in computerized eye-tracking assessment (CEA) outcomes between groups post intervention. Chiro, chiropractic; mTBI,
mild traumatic brain injury; RPQ, Rivermead Post-Concussion Symptoms Questionnaire.

Committee (HDEC 19/CEN/130, Australian New Zealand
Clinical Trials Registry: ACTRN1262000407897) on
August 21, 2019, and complied with the Declaration of
Helsinki.”®

Materials/Computer Setup

A laptop mounted eye tracker (Tobii 5, Tobii Group)
was used to record binocular gaze (133 Hz) and head
position data (33 Hz) during completion of the CEAs.
Visual stimuli were presented on a laptop computer
(Surface Book 2, Microsoft), and the eye tracker was
calibrated using the Tobii calibration software for each
participant. During testing, the participant sat approxi-
mately 70 cm from the screen, and the target stimuli
consisted of a black cross-shaped target presented on a
white background.”*

Computerized Eye-Tracking Assessments

Six tests with previously established diagnostic value in
differentiating mTBL """ were used in this study.

Egocentric Localization.  Participants were asked to move
to align the center of their head with the target 10 times.
The main outcomes were mean offset error and the mean
trial completion time.

Fixation Stability. ~ Participants maintained fixation on
the target for 3 trials of 10s each. The main outcomes were
the bivariate contour ellipse area (logl0 minarc?), and
mean gaze error.

Smooth Pursuit.  Participants gaze followed a moving
target as it traversed the screen in a Lissajous pattern for 4
trials of 30s. The outcomes measures were mean offset
error, total gain, and the number of catch-up saccades.

Saccade Test.  Saccade test was performed with 14 pro-
saccade and 14 antisaccade tasks interleaved and assessed
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simultaneously. Main outcomes were saccade latency and
the number of correctly performed trials.

The Stroop Test. ~ The Stroop test was performed follow-
ing a protocol adapted from the Stroop Color-Word test.*
Part 1 involved reading the word for 15 trials, and then part
2 required participants to match the font color for another
15 trials. Stroop outcomes included mean saccade deci-
sion-making latency, total trial time, and proportion of cor-
rect trials.

The YOR Test.  Participants’ gaze was fixed on the tar-
get while they actively rotated their head left or right for 10
trials in each direction (20 trials in total). The main out-
comes were fixation stability (bivariate contour ellipse
area), head to eye velocity gain, and the number saccades
in each trial. Eye gaze data was captured throughout the tri-
als and analyzed after all participants had completed the
study.

Intervention Procedures

Chiropractic intervention was provided by 4 different
chiropractors who were asked to examine and treat each
participant using best practice guidelines and the scope of
chiropractic practice specified by the New Zealand Chiro-
practic Board.”*” Each chiropractor saw between 1 and 14
participants each.

A patient history was taken from both the intervention
and control groups to control for potential placebo effects
from practitioner attention and time.”®’ Chiropractic was
provided with the intention of correcting spinal dysfunction
anywhere in the spine, also known as vertebral subluxa-
tions” using high velocity low amplitude (HVLA) adjus-
tive thrusts to correct spinal dysfunction found. Clinical
indicators were palpable restricted intersegmental range of
motion, asymmetric intervertebral muscle tension, abnor-
mal joint-play, and tenderness to palpation of the joint.”**’
Control participants underwent a series of passive and
active movements of the head, spine, and body. These
movements were intended to act as a physiological control
for possible afferent changes that may have occurred due
to cutaneous, muscular, or vestibular from the passive
and active movements used in preparing for spinal
manipulation.”’”*' This involved the participants being
moved into spinal manipulation setup positions but without
delivering actual chiropractic intervention or loading ten-
sion into any spinal joints.”” No spinal manipulation was
performed during any control session.

Statistical Analyses

Statistical analysis was performed using R software
(version 4.0.3, https://www.r-project.org/) in RStudio
(version 1.3.1093, Posit, PBC, https://posit.co/). A 1-
way analysis of covariance to determine if there was a
difference in variable change between groups
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(chiropractic or control) controlling for preintervention
variable scores.”” Count data used a binomial mixed
effects regression model,** or a O-inflated Poisson
model if more than half the values were 0. Statistical
significance was defined as P < .05. Estimated marginal
means of each group pre and post intervention were cal-
culated using the emmeans package.’® Pairwise differen-
ces with adjusted P values between pre and post for
each group were also calculated the emmeans package.

RESULTS

Twenty intervention (aged 25.8 & 4.1 years; 15 females;
median weeks since injury, 52.5) and 20 controls (aged
25.7 & 4.7 years; 13 females; median weeks since injury,
52.3) with PPCS were recruited and completed the whole
experiment, with no participants withdrawing from the
trial, and no harms of any kind reported. The mean RPQ
score for all participants was 30.2 & 11.9. There were no
significant differences between proportions for the 3 RPQ
domains (somatic, 16.2 + 6.6; emotional, 7.1 £ 4.4; and
cognitive, 6.9 £+ 2.7; X2(2, N =3)=0.632; P =.729) for all
participants, nor between the control or chiropractic groups
(P > .999). The RPQ mean total score (30.2 + 11.93) fell
between previously recorded PPCS mean scores,”’ "
revealing this study’s participants reported themselves sim-
ilarly affected, symptomatically, to the average person with
PPCS from mTBI. For comparison, RPQ scores when
administered to healthy people have a mean of ~3.5.*

The type of chiropractic care was HVLA spinal adjust-
ments; table assisted chiropractic adjustments, and instru-
ment assisted adjustments. Table | summarizes the type of
chiropractic care that was provided to participants and the
vertebral segments adjusted. Instrument and HVLA adjust-
ments were each provided to 5 participants, instrument

Table 1. Types of Chiropractic Care Provided to Study Partici-
pants and Vertebral Segments Adjusted

Which Chiropractor

Type of care Frequency Provided Care
High velocity, low amplitude only 14 1,2,3,4
Instrument assisted only 1 1
High velocity, low amplitude, 5 1,2

and instrument assisted

Segments adjusted
Cervical (CO, 1,2,4,5, and 7) 28 1,2,3,4
Thoracic (T1 rib and T2-8) 28 1,2,3,4
Lumbar (L2 and 5) 5 1,2,3
Pelvis (sacrum and ilia) 20 1,2,3,4
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only was used with 1 participant, and HVLA only
approaches were used exclusively with 14 participants.
There were 81 separate vertebral segments adjusted over
all the participants with each participant having a mean of
4.1 £ 1.1 segments adjusted.

Most participants, 45%, sustained their mTBI from a
sporting injury (x*[5, N = 40] = 34.29; P < .001) and
mechanism of injury (assault, domestic violence, falls,
motor vehicle accidents, and other) were balanced between
groups (P > .050).

CEA Measures

For ease of interpretation of the large number of CEA
outcomes, a summary of significant differences between
the chiropractic and control groups following intervention,
alongside estimated marginals means, are provided in
Table 2. For transparency, all CEA test (significant and
nonsignificant) results are provided in a Supplementary
Material table (Results for all variables).

The change in gaze stability was different between
groups (F[1, 1] = 8.17; P = .005), improving after chiro-
practic intervention (pre, 3.26; post, 3.16 log;, minarc?)
but worsening in the control group (pre, 2.94; post, 3.12
log,o minarc®). Horizontal gaze error showed a similar
change (F[1, 1] =9.35; P =.003), reducing after chiroprac-
tic (pre, 0.35; post, 0.21 degrees) but worsening after con-
trol intervention (pre, 0.20; post, 0.22 deg). There was no
impact of chiropractic on the vertical gaze error (FI1,
1] = 0.19; P = .659). During the VOR test, gaze stability
improved for the chiropractic group (pre, 4.00; post, 3.86
logo minarc?; F[1, 1] =41.41; P < .001) compared with
the control group (pre, 3.94; post, 3.90 log;, minarc?). Ver-
tical gaze error during VOR improved in both groups, but
more so in the chiropractic group (pre, —0.46; post,
—0.39 deg, F[1, 1] = 28.68; P < .001) compared with
the control group (pre, —0.14; post, —0.34 deg). Similarly,
the time taken to reach maximum gain was much poorer in
the control (pre: 83.3, post: 116.6 ms) compared with
the chiropractic group (pre, 83.4; post, 83.3 ms, FII,
1] = 57.43; P < .001). There was no difference in the
change in horizontal gaze error between groups during
VOR (F[1, 1]1=2.00; P = .157).

For the Stroop test of selective attention, the chiropractic
group showed significant improvements in the number of
correct trials for part 1 (chiro pre, 14; IQR, 2; minimum, 6;
post, 14; IQR, 2; minimum, 11; control pre, 15; IQR, 1;
minimum, 11; post, 14; IQR, 2; minimum, 11; X2[1,
N = 40] =3508.64; P < .001), but not part 2 (x’[l,
N =40]=0.17; P = .678), whereas there was no difference
in performance in the control group (part 1: x’[1,
N = 40] = 0.10; P = .758; part 2: Xz[l, N =40] = 2.92;
P = .087). Decision-making saccade latency for part 1 of
the Stroop test increased in both groups, but slightly more
in the control (pre, 733.5; post, 842.1 ms; F[1, 1] = 60.99;
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P < .001) than the chiropractic (pre, 716.9; post, 783.5
ms). This led to longer trial times following interventions
in both groups, but more so in the control group (chiro pre,
900.0; post, 1000.0 ms; vs control pre, 917.0; post, 1067.0
ms; F[1, 1] = 68.00; P < .001). Part 2 showed no differen-
ces between groups for saccade latency (F[1, 1] = 2.48;
P = .114) or total test time (F[1, 1]=0.13; P =.721).

During saccade testing, the change in saccade latency
was different between groups for both prosaccade
(F[1, 1] = 1494, P < .001) and antisaccade tests:
F[1, 1] =36.13; P < .001), improving for both groups, but
more so for the chiropractic group (pro pre, 366.9; post,
317.0 ms; anti pre, 350.3; post, 317.0 ms) compared with
the control group (pro pre, 366.9; post, 350.3 ms; anti pre,
367.0; post, 341.9 ms). There was no difference in the
number of tests performed correctly for either group or
type of saccade (P > .05). In pursuit testing, the total gaze
error worsened after chiropractic intervention (F1,
1] = 43.14; P < .001; pre, 0.20; post, 0.24 deg) compared
with the slight improvement seen in the control group (pre,
0.11; post, 0.09 deg). Total gain worsened in the chiroprac-
tic group (pre, 1.02; post, 1.03; F[1, 1] =54.97; P < .001)
while staying the same for the control group (pre, 1.01;
post, 1.01).

For egocentric localization, there was a difference in the
vertical alignment error between groups (F[1, 1] = 52.30;
P < .001), with a small improvement in the chiropractic
group (pre, —37.69; post, —36.42 mm), but a much greater
improvement for the control group (pre, 13.55; post, —0.37
mm). There were no changes to horizontal error after inter-
vention (F[1, 1] =0.72; P = .395).

DiscussioN

Key Findings

The results of this study show that for those with PPCS,
chiropractic intervention improved gaze stability, both with
a stable head (fixation) and during dynamic head move-
ment (VOR). Chiropractic also reduced saccade latency,
and improved performance in the Stroop test, but increased
total gaze error during pursuits compared with the age-
matched controls. These findings support the idea that
vision-based mTBI symptoms involve some abnormal spi-
nal or proprioceptive input, and that interventions aimed at
reducing spinal dysfunction may potentially have some
benefit in the management of mTBL

Chiropractic Improved Gaze Stability

The chiropractic group showed improvement in gaze
stability during both the fixation test and during VOR test-
ing. Previous research has shown brain-injured people have
poorer fixation than healthy controls,”” suggesting that
chronic injury may negatively affect gaze stability. Addi-
tional research also suggests that those with mTBI have
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Table 2. Results for Computerized Eye-tracking Assessment Outcomes with Significant Effects
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Estimated Marginal Means: Change Score (CI)

Difference Between

Outcome F (df), P Value Chiro Control Groups P Value
Egocentric localization

Vertical error (mm) 52.30(1, 1), <.001 —8.61 (-11.351 to —5.86) 6.00 (3.255 to 8.746) <.001

Fixation stability

BCEA (log, o minarc?) 8.17 (1, 1), .005 —0.14 (—0.228 to —0.062) 0.03 (—0.056 t0 0.111) .005

Horizontal error (deg) 9.35(1, 1), .003 —0.14 (—0.218 to —0.056) 0.04 (—0.039 to 0.129) .003
Pursuit

Total error (deg) 43.14 (1, 1), <.001 0.11 (0.087 to 0.136) —0.01 (—0.03 t0 0.019) <.001

Total gain 54.97 (1, 1), <.001 0.01 (0.011 to 0.016) —0.0008 (—0.003 to 0.002) <.001

Horizontal gain 21.02 (1, 1), <.001 —0.004 (—0.016 to 0.008) —0.04 (=0.055 to —0.031)  <.001

Vertical gain 27.91 (1, 1), <.001 0.01 (—0.0003 to 0.018) —0.03 (-0.036 to —0.017)  <.001
Prosaccade

Latency (ms) 14.94 (1, 1), <.001 —75.4 (—86.6 to —64.2) —44.2 (=55.4t0 —33.1) <.001
Antisaccade

Latency (ms) 36.13 (1, 1), <.001 —74.3 (—86.1 to —62.5) —22.6 (—=34.7 to —10.6) <.001
Stroop part 1

Decision-making latency (ms)  60.99 (1, 1), <.001 0.1(0.1t00.1) 0.1(0.1t00.1) <.001

Test time (s) 68.00 (1, 1), <.001 0.04 (0.032 to 0.041) 0.06 (0.06 to 0.07) <.001
Vestibulo-ocular reflex

BCEA (log,, minarc?) 41.41(1, 1), <.001 —0.10 (—0.12 to —0.084) —0.02 (—0.036 to —0.001)  <.001

Vertical error (deg) 28.68 (1, 1), <.001 —0.15 (—0.185 to —0.123) —0.05 (—0.072 to —0.03) <.001

Time to max gain (ms) 57.43 (1, 1), <.001 —25.1(—26.7to —23.4) —16.2(—17.8 to —14.7) <.001

Number of saccades 42.92(1, 1), <.001 0.06 (0.044 to 0.073) —0.01 (—0.022 to 0.006) <.001

Binomial mixed effects regression model for the number of correctly performed trials (of 15 trials)

Time/Trial Number
Interaction ( Xz[degrees
of freedom, NJ, P Value)

P1 Stroop chiro xz(l, N =40) = 3508.64, <.001

Number of Correct
Trials: Control

Number of Correct Trials: Chiro

Pre, 14; IQR, 2; min,
6; post, 14; IQR, 2; min, 11

Pre, 15;IQR, 1; min, 11;
post, 14; IQR, 2; min, 11

Results for all outcomes are available in the Supplementary Material.
BCEA, bivariate contour ellipse area; chiro, chiropractic.

concomitant  neck  dysfunction'”  and  sensory
abnormalities.”'*” The brain can down-weight abnormal
cervical afferent information when it conflicts with vestibu-
lar and visual inputs,”””" leading to less reliable input to
gaze stability. Chiropractic intervention, by modifying the

proprioceptive input from more functional spinal joints,
could help restore this input to the brain’s multisensory
processing, leading to an improved internal representa-
tion of the body’s spatial orientation, helping to
improve fixation.
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This improvement in fixation was also seen during the
dynamic head movement as part of VOR testing, where
additional cerebellar-vestibular pathways are involved.”
Altered proprioception from the cervical spine, after
chiropractic, may have bolstered brainstem activation or
vestibulo-cerebellar components of the VOR pathway aug-
menting its function.”®>® Chiropractic intervention may
have also improved gaze stability via decreasing disordered
proprioceptive drive from the neck and allowing the cer-
vico-ocular reflex to function more effectively. The cer-
vico-ocular reflex helps to steady gaze in the presence of
neck movement and enhancing VOR function and further
stabilizing gaze.”

Chiropractic Improved Attentional Reading Tasks

During the Stroop test, our PPCS participants had higher
error rates””®" and the time to complete a trial was much
longer than that of previously found normative data.’” This
suggests that inhibitory control is affected in PPCS, per-
haps more so in part 1 than part 2 of Stroop.®” Part 1 of the
Stroop test, where the required response is indicated by the
color denoted by the word requires additional language
processing across a wider range of neurologic areas, com-
pared with part 2, which only requires identification of the
word color before generating a response.®”

Looking at the overall picture of Stroop results, it seems
that although either intervention increased trial time or
decision-making latency, only the intervention aimed at
improving proprioceptive drive—chiropractic—resulted in
fewer errors. There is sparse previous data for chiropractic
in relation to the Stroop test, but research on a choice-reac-
tion time test—somewhat analogous to the Stroop test—
found whole body vibration used to stimulate propriocep-
tors reduced P300 brain wave latency.”” The P300 wave
latency is lengthened in brain injury, and a longer latency
indicates slower cognition.®® Early research supports the
P300 wave having a somatosensory component but how,
exactly, somatosensory stimulation affects the P300 is yet
unknown.®” Chiropractic intervention has been shown to
improve proprioceptive drive, so it is possible that chiro-
practic care can shorten P300 wave latency by way of alter-
ing proprioceptive drive,”*' and improve the ability to
respond to a choice-reaction test such as the Stroop test.

Other Findings

The chiropractic intervention group showed impairments
in several measures of gaze accuracy during pursuit testing.
This may be because the chiropractic intervention was aimed
at reducing proprioceptive, rather than vestibular dysfunction.
Brainstem eye-head neurons, which help control and coordi-
nate eye and head movements for gaze stability, are affected
by vestibular inputs but not cervical proprioceptors.”® There-
fore, an intervention aimed at improving disordered

Cade and Turnbull
Chiropractic Care and Eye Tracking After Concussion

proprioception, such as chiropractic, may not be expected to
improve errors during pursuit. Lastly, our study suggests that
chronic injury may result in an increased number of catch-up
saccades during pursuits.”’ Predictive gaze movements in
pursuits stem from anticipating target movement and learning
target patterns, which originate from the middle temporal
area and medial superior temporal area and receive inputs
from the frontal eye fields in the prefrontal cortex.’® These
are areas that can be hypo-perfused and exhibit reduced glu-
cose metabolism after mTBI,°9 which could lead to difficulty
integrating sensorimotor information. Disordered sensorimo-
tor integration and dysfunctional cortical gaze movement
areas may have led to less accurate or slower anticipatory
eye movements,””’" and more catch-up saccades.

Saccade latencies were both longer and showed minimal
differences between prosaccade and antisaccade, compared
with previous research.”” This could be attributed to the
interleaving of prosaccade and antisaccade trials, requiring
participants to simultaneously consider the steps involved
in both tasks. Additionally, imagining a prosaccade or anti-
saccade task activates the supplementary eye fields, which
may inhibit frontal eye field drive.”* Although both groups
demonstrated a postintervention reduction in saccade
latency, this was more pronounced in the chiropractic
group. Previous research shows that chiropractic interven-
tion can change prefrontal cortex’* function, especially the
N30 sensory evoked potential peak, which is implicated in
sensorimotor processing and learning new motor skills.””
Therefore, any improved proprioceptive drive post chiro-
practic intervention may have affected sensorimotor proc-
essing and assisted in learning how to perform the saccade
test, resulting in a reduced decision-making latency.

Chiropractic and Its Potential Influence

How we view and interpret our visual environment is depen-
dent on where our brains believe us to be in space.’® The spine
provides the largest amount of proprioceptive information to the
brain,”” so it follows that if the injury also causes spinal dysfunc-
tion, it could alter how we interpret visual information.”® Chiro-
practic intervention is thought to activate musculature and
spindles that surround spinal joints, firing 1A afferents to the
brain, which are processed in the motor and prefrontal
cortices.'””” These inputs help to build the brain’s internal map
of where the joints and body is in space.*’ Additionally, chiro-
practic changes motor evoked potentials,”” and their generation
time,”’ suggesting chiropractic adjustments not only affect sen-
sory drive to the brain, but also motor outputs.*” Although
research into how chiropractic affects the brain is in its infancy,
studies show that chiropractic adjustments can lead to changes
in multimodal sensory integration involving visual and auditory
inputs”"** and motor and motor-learning outputs.**** Our
study results indicate that chiropractic can impact sensorimotor
function and influence a range of CEA outcomes, so could be
considered in those suffering from PPCS.
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Strengths and Limitations

A strength of this study was the use of many different
CEA-based outcome measures including attentional and
inhibitive process testing, rather than focusing on just 1
aspect, such as oculomotor function, or even a single eye
tracking—based test."” A factor which was both a strength
and limitation was allowing chiropractors flexibility to
make their own clinical decisions when deciding on the
intervention for participants. Although the lack of interven-
tion standardization—chiropractors were allowed to adjust
where they saw fit for each participant—may have reduced
internal validity, it also increased its external validity with
results more likely to be consistent with what could be
expected in clinical practice.

The heterogeneity of the study population, and lack of
specific inclusion criteria (such as location or cause of
mTBI) was also a limitation of this study. Participants var-
ied widely in their mechanism of injury, time since injury,
symptomatology, and spinal findings. These observations
highlight a known issue in mTBI research—population het-
erogeneity and the difficulties surrounding mTBI identifica-
tion, diagnosis, treatment, and chronification of the disorder.”
The wide range of causative injuries, differing previous treat-
ment, time since injury, and comorbid issues could have
confounded or influenced the results of this study, although
the randomization of groups and use of age-matched controls
would have helped mitigate these factors.

CONCLUSION

This study found that chiropractic care can improve
some aspects of visual function, particularly gaze stability,
when compared with an age-matched control group. This
reinforces the idea that some of the ongoing visual symp-
toms in PPCS may be due to abnormalities in the cervical
spine. The study also demonstrated that a simple CEA bat-
tery can be successfully used in a clinical interventional
trial in a diverse PPCS population to help provide objective
markers for diagnosis and tracking the effectiveness of
interventions over time.
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Practical Applications

e This single-blinded randomized controlled
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